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Two colloidal spheres aremaintained in oscillation by switching the
position of an optical trap when a sphere reaches a limit position,
leading to oscillations that are bounded in amplitude but free in
phase and period. The interaction between the oscillators is only
through the hydrodynamic flow induced by their motion.We prove
that in theabsenceof stochasticnoise theantiphasedynamical state
is stable, and we show how the period depends on coupling
strength. Both features are observed experimentally. As the natural
frequencies of the oscillators are made progressively different, the
coordination isquickly lost. These results helpone tounderstand the
origin of hydrodynamic synchronization and how the dynamics can
be tuned. Cilia and flagella are biological systems coupled hydrody-
namically, exhibiting dramatic collective motions. We propose that
weakly correlated phase fluctuations, with one of the oscillators
typically precessing the other, are characteristic of hydrodynami-
cally coupled systems in the presence of thermal noise.

colloidal particles ∣ hydrodynamic interaction ∣ metachronal wave ∣
optical tweezers ∣ nonlinear dynamical system

The self-organization of nonlinearly interacting dynamical ele-
ments into synchronized states is a “classic” topic of science,

underlying a wide range of biological (1, 2) and technological
processes (3). A relatively unexplored problem is the synchroni-
zation in biological flows, thought to be generated by hydrody-
namic coupling at the micrometer scale. In this class of wet
micron-scale problems, the coupling is mechanical but of viscous
character, and the effects of thermal noise are often not negligi-
ble. Coordinated motion is crucial for the effective functioning
of cilia and flagella, the elements of eukaryotic cells implicated
in generating fluid flows and motility (4). Hydrodynamic coupling
is also important in natural and artificial microfluidic conditions
(5, 6) and low Reynolds number (Re) “microbot” swimmers
(7, 8). At the relevant scales and temperatures, it has the same
magnitude as the random thermal forces; nevertheless, the syn-
chronized states of e.g. cilia are stable, so that robust mechanisms
to induce them must exist. Cilia play vital roles on the surface of
the respiratory tract in mammals, maintaining an upward flow
of mucus, away from the lungs (9). They also determine the asym-
metry of various organisms during development (10). In arrays of
cilia the beating is synchronized, generating complex wave-like
patterns called metachronal waves (11). Nearby sperm cells
(12) also exhibit synchronized motion patterns, resulting at least
in part from the interaction of neighboring oscillating flagella
through the fluid (13). Recent experiments (14, 15) have explored
the phenomenology of synchronized flagella in Chlamydomonas.
Flagella and cilia are mechanically coupled by the flow of fluid,
which is typically in the low Re regime (11, 16, 17).

Model
Wehave devised an experimental system that contains theminimal
elements to probe and understand the onset of collective motion
induced by hydrodynamic interaction. Two driven oscillating
colloidal spheres lock into antiphase motion, showing a surprising
behavior caused by the interplay of thermal noise and hydrody-
namic interactions, as well as general features typical of coupled
nonlinear oscillators. The “artificial model system” studied here

reduces the complexity of a biological systemand canbe controlled
directly, enabling theoretical models to be developed and
validated. Optical traps are used to confine colloidal beads within
harmonic potentials (18). The bead radius is a ¼ 1.5 μm, the trap
stiffness is κ ¼ ð1.55� 0.07Þ × 10−6 N∕m, the sample viscosity
η ¼ 7.4 mPa s (see SI Methods). In the absence of other external
forces, a particle in this potential undergoes overdamped stochas-
tic motion driven by thermal forces (19). In the experiment two
beads are confined in separate harmonic wells. The position of
each well is linked to the spatial configuration of the beads via
a “geometric switch.” Specifically, the laser trap on each particle
is moved between two positions a distance λ apart, as shown in
Fig. 1 A and B, following the rule that the switch of trap position
is triggered when a particle approaches to within a distance ξ from
the minimum of the active potential. This feedback-controlled
motion of the traps is sufficient to induce sustained oscillations,
and each particle undergoes longtime periodic motion with ampli-
tude λ − 2ξ, shown in Fig. 1C. Crucially, when more than one
bead is present in the system, the geometric switch is determined
independently for each bead (100 times per second), so that the
external trap forces do not themselves impose the phase of oscilla-
tion nor its period.

A biological cilium is itself a complex structure; its own regular
beating (and switching) is constrained by a mechanical feedback
(20). In a given flow condition, the mechanical stress and the geo-
metrical configuration are coupled parameters, and the geometric
feedback condition is a simple way to account for how a cilium
senses the moment to switch between so-called power and recov-
ery strokes (11, 21). In this spirit the system investigated here can
be thought of as an idealized 2-cilia experiment: The optical trap
force plays the role of the molecular motors that induce active
movement, and the hydrodynamic flow field produced by themov-
ing beads well represents beating cilia, at least at large distances
(17, 22). Themodel is also a general experimental system to probe
the physics of stochastic and actively forced hydrodynamically
coupled oscillators. A similar model based on a deformable rota-
tor in place of a geometric switch has been proposed (16), tested
on a macroscopic scale (23), but seems harder to realize experi-
mentally on the colloidal scale.

The experimental system can be considered theoretically by
describing the hydrodynamic interactions with the Oseen tensor
O (19, 24), giving the equation of motion

_xi ¼ ∑
j

OijðFj þ f jÞ;

with Oij ¼
Iþ d̂ijd̂ij
8πηdij

and Oii ¼ I∕γ; [1]
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where Fj is the force applied on bead j by the optical tweezers, f j is
thermal noise, γ ¼ 6πηa, d̂ij is the unit vector parallel to the vector
dij between beads i; j, and I is the unit matrix. The thermal noise
has zero mean and correlation hf iðtÞf jðt0Þi ¼ 2kBTO−1

ij δðt − t0Þ in
order to have equipartition (24). These equations are correct in
the far field limit (d ≫ a) and for steady flows (d ≪ ℓ, where
ℓ≃ ð2η∕ðωρf ÞÞ1∕2, ω is the inverse period of oscillation, and ρf
the fluid density). The hydrodynamic interaction is thus included
at the same level of approximation as in previous work (8, 19, 25),
and the regime is simpler than that in ref. 26. The geometric
switch is implemented as follows. Considering the displacements
x1, x2 of the two beads about two reference positions along the x
axis as in Fig. 1A (as the system has cylindrical symmetry, only the
x direction is considered below), the force applied on bead i is
Fi ¼ −κðxi þ σiλ∕2Þ where σi ∈ f−1; 1g is a configuration-
coupled variable that switches at the trigger positions. Formally
this switch condition can be written as

_σi ¼ �2δðt − t�i Þ; [2]

where t�i is such that xiðt�i Þ ¼ �sw, and swðσiÞ ¼ ðλ∕2 − ξÞσi. As a
function of time, σi appears as a square function, which is set by
the dynamics of xi.

The most relevant features of the model are (i) the geometric
switch gives constant-amplitude but phase-compliant oscillations
and thus the generic possibility to synchronize; (ii) the inverse
bead separation sets the coupling strength, which interplays with
thermal noise (this effect is also related to the trap stiffness); (iii)
there is a characteristic beating time of the single oscillators,
given by their typical arrival time at the switch, which can be
set to be the same or different for the two beads.

We have realized the system experimentally and solved numeri-
cally Eqs. 1 and 2 using the method of Ermak and McCammon
(27). Eq. 1 can be linearized (dij ≃ d) if the oscillations are small
(λ ≪ d) (19). Numerical simulations show that under the experi-
mental rangeof conditions this linearization does not influence the
numerical results. We have solved the linearized equations in
absence of noise, piecewise between each switch event, and
obtained a deterministic solution in the form of a map as shown
in SI Discussion. Finally, we have considered the linearized equa-
tions with noise to provide analytical arguments supporting our
experimental and numerical observations.

Results
Oscillators Lock into Antiphase.We first briefly discuss the analytical
solution with no noise, which is useful for the interpretation of the
results discussed later (see also SI Discussion for more details).
The general solution of the equation of motion Eq. 1 is
x�ðtÞ ¼ x�ð0Þ expð−t∕τ�Þ, where x� ¼ x2 � x1 and x1, x2 are the
displacements of the two beads about their reference positions,
and τ� ¼ τ0ð1� 3a∕2dÞ−1 (ϵ ¼ 3a∕2d quantifies the strength of
the hydrodynamic coupling).

Starting from an arbitrary initial condition, this solution can be
propagated until one particle reaches the switch. At this point,
the same solution remains valid, changing one potential and
setting the initial condition as the switch point. Iterating this
procedure leads to a map from the space of initial conditions.
The only fixed points are the antiphase and the inphase state.
Stability analysis shows that only the antiphase state is stable.
Furthermore, the relaxation dynamics towards the stable state
can be calculated: a perturbation h ¼ 1 − r∕ρ from the antiphase
state, i.e. from the configuration where particle 1 has displace-
ment x1ð0Þ ¼ −ρ and particle 2 has position x2ð0Þ ¼ r < ρ, where
ρ ¼ λ − ξ, is damped following the equation _h ¼ −ϵBh, where the
dot indicates a derivative with respect to time in cycles, B is a
geometric parameter depending on the positions ρ and ξ of
the switch points, and ϵ quantifies the coupling strength. Since
h can be interpreted as a “phase difference” with respect to a
stable antiphase state, this phenomenology is similar to other
models for cilia or general oscillators (3, 16, 23).

Thus, the deterministic equations of motion have a single
stable analytic solution, with the beads oscillating exactly in anti-
phase. In the absence of noise, an isolated particle would oscillate
with a period P ¼ 2τ0 logððλ − ξÞ∕λÞ, where τ0 is the relaxation
time in a harmonic potential, determined by τ0 ¼ γ∕κ. With
two particles interacting through the hydrodynamic flow in the
viscous solvent the hydrodynamic coupling is sufficient to induce
the synchronization of the two oscillators. Other possible inter-
actions (electrostatic, dispersion forces, trap cross-talk) are neg-
ligible for the interparticle distances studied here. The resulting
motion is, to a first approximation, in antiphase. Fig. 2A shows
typical trajectories.

Fig. 2B shows the power spectrum of bead displacement during
the experiment, with the deterministic solution describing well
the experimental result of synchronization and the dependence
of the locking frequency on the distance between beads: Fig. 2C
shows that as d is reduced, the drag increases and the power
spectrum shifts to lower frequencies. The inphase (þ) and anti-
phase (−) modes are decoupled (19) and have the relaxation
times τ� given above. The deterministic relaxation time is τdet ¼
τ− logðρ∕ξÞ for the antiphase mode. The frequency of bead mo-
tion in coupled oscillations in the absence of noise is therefore
ωsync ¼ 1∕ð2τdetÞ, in good agreement with the data of Fig. 2C.

The phase correlation between beads is quantified by calculat-
ing the order parameter:

QðtÞ ¼ −
R
tþ6τ
t x1ðt0Þx2ðt0Þdt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

tþ6τ
t x21ðt0Þdt0

R
tþ6τ
t x22ðt0Þdt0

q ; [3]

where themoving timewindow spans three periods (≃110 frames).
Q is constructed so that Q ¼ 0 for uncorrelated signals, Q ¼ 1 for
antiphase motions, and Q ¼ −1 for inphase (see SI Text, Fig. S1
and Table S1). The distribution of QðtÞ over an entire experiment
is presented in Fig. 3A, for different values of bead separation. The
initial conditions (in both experiment and numerical simulation)
are irrelevant; the runs are started inphase, but after at most a
couple of cycles the beads are either antiphase or at random
phase difference. In Fig. 3C the distribution of QðtÞ is plotted
for different stiffness ratios of traps 1 and 2: κ1∕κ2. The antiphase

X2X1
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t
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B

Fig. 1. The physical system. Driven oscillations of fixed amplitude, but free
inphase, are obtained using optical traps. The trap alternates between two
minima with a “geometric switch” triggered by the position of the colloidal
particle. (A) and (B) illustrate the experimental parameters, showing the
trap separation in a pair λ ¼ 1 μm, the distance from the minimum at which
the traps are switched ξ ¼ 0.248 μm. The distance between trap pairs is in
the range 4 μm ≤ d ≤ 40 μm. (C) Two particles lock in antiphase. Particle
positions overlayed on an image sequence of a pair of particles undergoing
driven oscillations controlled by the geometric switch. Antiphase motion
can be seen. Images are shown every 0.1 s, and data points are shown every
0.01 s. Scale bar, 5 μm.
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Fig. 2. Antiphase synchronization. The beating
frequency in the synchronized state depends on the
hydrodynamic coupling strength. (A) Particle displa-
cement in an experiment with d ¼ 6 μm. (B) The
power spectrum of position of a particle during the
active feedback experiment, for two different values
ofd. Thepeak canbe fittedwitha Lorentzian function
to obtain ωsync. (C) As the distance d between beads is
reduced, the drag increases and ωsync decreases.
Experiments (circles anderror bars) comparewellwith
the theoretical estimate based on the deterministic
relaxation time of hydrodynamically coupled beads
(solid lines). The inset shows the dependence of
ωsync on the trap stiffness, with κ1 ¼ κ2.
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Fig. 3. Loss of synchonization. As the coupling is reduced, either by increasing d or by detuning the characteristic beating times of the two oscillators,
synchronization is lost due to thermal noise. (A) Heat map showing the histogram of the synchronization order parameter Q as a function of distance, and
thus at varying coupling strength. A strong antiphase correlation (Q≃ 0.8) can be seen in both experiments (Top) and numerical simulation (Bottom). Q < 1

is principally determined by a time delay Δt which results from correlated fluctuations. As d increases, synchronization is lost via the process shown in (B).
(B) The switch time difference tsw1 − tsw2 is plotted as a function of the period index (each panel is obtained a distance d, as labeled). At small d this quantity
fluctuates around the locked state, while phase-slips and drift emerge as the couplingweakens. (Bottom) Noise level in flat regions is plotted and shows a linear
increase with d, up to a level that is comparable to the half-period of the motion (solid line). This is the process by which synchronization is lost in this system.
(C) (Top) and (Middle) Histogram of Q at varying ratio of the stiffness for the two traps, and thus of the intrinsic frequency of the two oscillators. Maximal
antiphase correlation is observed for oscillators of equal intrinsic frequency. (Bottom) Loss of synchrony (defined by a threshold atQ ¼ 0.6) at different coupling
strengths. The numerical data (black circles) provides ameasure of the Arnold tongues for this system and are compatible with the experimental observations at
d ¼ 10 μm. Error bar is the uncertainty in the trap stiffness ratio.
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correlation is strongest for the largest coupling parameter (1∕d),
i.e. minimum d, and for equal trap stiffness.

Synchronization is Lost by Increasing Noise or Detuning the Oscillators.
Asmay be expected, the thermal noise can lead to loss of synchro-
nization. This is seen clearly when the coupling strength is reduced
by increasing the distance between the particles, Fig. 3 A and B.
This is one of the factors that determine Q < 1 even at the max-
imum coupling. As the coupling parameter is reduced, the arrival
times of the beads at the switch positions are increasingly stochas-
tically different. Two effects are observed which contribute to the
loss of synchronization: “phase-slipping” and “drowning” in noise.
The phase-difference of the two oscillators may exhibit an increas-
ing number of steps, visible in Fig. 3 B for intermediate coupling
strength. The steps are “phase-slips” (3) or barrier hopping events.
The standard deviation of arrival times, evaluated in between slip
events, is shown in the bottom panel of Fig. 3 B. This random time
difference grows with noise, up to the half-period P∕2 when the
loss of synchronization is complete, and the phase-difference plot
shows a random drift. The loss of synchronization process can be
followed in the progressive broadening of the distribution of Q
towardsQ ¼ 0 as coupling is weakened, resembling a second order
phase transition.

In general, for weakly coupled stochastic oscillators to synchro-
nize, the intrinsic frequencies must be nearly equal (3). Fig. 3C
shows synchronization of oscillators with different frequencies,
provided that the intrinsic frequencies are close. In these experi-
ments, the stiffness of the two traps is set to different values, which
changes the decay rate τ0 for each bead. This can be thought of as
detuning the oscillators. The resulting behavior is shown experi-
mentally for d ¼ 10 μm and is calculated numerically for a range
of d (additional data are shown in Fig. S2). Fig. 3C shows that the
region of trap strength ratio in which synchronization occurs
vanishes as the distance increases, i.e. as the coupling becomes
weaker. Many models showing synchronization display similar
trends, with the synchronization region delimited by approxi-
mately linear boundaries (3). In the loss of synchronization due
to detuning, the phase slips and the drift are not random, but
biased, thus this system is comparable to a random walker in a
tilted periodic potential (28). Inspection of the deterministic ver-
sion of the geometric switch model (see SI Discussion) indicates
that a weak detuning of the intrinsic frequencies results in a linear
perturbation of the antiphase fixed point, similarly to othermodels
for cilia synchronization described in the literature (16).

Discussion
Noise and Hydrodynamic Interactions Cause a Stochastic Delay Time.
Surprisingly, the main reason for never observing perfect synchro-
nization (Q < 1 in Fig. 3A) is that there is a stochastic but typically
finite delay in the motion of the coupled beads. This element is
especially interesting because it is specific of synchronization
due to hydrodynamic interactions in a Brownian system. The
relative phase of the two oscillators has small fluctuations from
cycle to cycle.Within each timewindow of the experimental series,
the delay time Δt is measured by finding the maximum value of
anticorrelation as the lag time is varied. This time Δt represents
the shift of the two oscillators, relative to the antiphase state,
and can be positive or negative.Δt has zeromean and its time auto-
correlation function decays exponentially with a timescale of a few
half periods, depending on the coupling strength, Fig. S3. This
decay time can be understood theoretically by an analysis of
the stability of a perturbed antiphase locked state (details in
SI Discussion). However, jΔtj is typically finite. Fig. 4A shows the
distribution of the absolute value jΔtj , which has peaks at finite
values of switch time difference. These peaks at finite delay time
aremost evident as the coupling strength increases. Themeasured
time interval is up to 5-fold larger than the experimental feedback
time, thus jΔtj is not simply an effect of having to wait a feedback

delay time to enable the trap switch.Aproof of this is also obtained
by simulating the system with varying feedback times. The experi-
mental feedback time is an irrelevant parameter in relation to this
effect (see SI Methods and Figs. S4 and S5).

To understand the origin of this typical delay, a simpler scenar-
io can be considered. Two trapped beads, at distance d apart, are
released from opposite displacements. The statistics of the time
difference in reaching a limiting displacement �ξ are collected.
Trap switches are absent. A similar phenomenology of finite Δt is
already present here (see SI Text and Figs. S6, S7, and S8). This
result indicates that the presence of a delay is a fundamental fea-
ture of a family of problems and is most likely originating from
the correlation of first passage times of two hydrodynamically
coupled beads, for which unfortunately we have no analytical

Fig. 4. The fingerprint of hydrodynamic synchronization. In the presence
of thermal noise, a characteristic delay time emerges between subsequent
switches. The bead oscillations are delayed by a finite time Δt. (A) Heat-
map for the distribution of jΔtj at varying distance, measured in the experi-
ment (Top) and by numerical simulation (Middle), shows the peak value of
jΔtj → 0 and also a broadening of the distribution with increasing d. (B) Heat
map of the cross-correlation of switch positions as a function of the delay
time, showing strong correlation at finite time intervals.
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expression. This effect is related to previous observations (19, 29)
that a system composed of two beads in a pair of stationary traps
undergo fluctuations which are anticorrelated with a stochastic
delay of about τ0. However, through the geometrical switch
the correlation of fluctuations becomes a global feature of the
beating of the oscillators. The correlation between switch times
is also reflected in a correlation of the switch positions. Fig. 4B
shows that the position xs1 of the first bead at the moment the
second bead switches is correlated with the position xs2 of the sec-
ond bead when the first bead switches. This correlation depends
on the time interval between the switch events, and the most strik-
ing result is that the maximum of correlation occurs for finite
switch time intervals.

To conclude, this work shows clearly that thermal noise sets
an upper cutoff on the distance between oscillators to sustain
synchronization in low viscosity liquids. The cutoff distance will
depend on system parameters, in particular the beating frequency
and the viscosity; in the conditions studied here synchronization is
lost beyond 40 μm. Effects that arise from changes in the beat
frequency have been shown, and some biological systems might
benefit from these. For example inChlamydomonas there is a syn-
chrony loss when the sudden change of the intrinsic frequency of
one of the two flagella causes detuning (14). This leads to swim-
ming trajectories with sharp turns, analogous to the run-and-tum-
ble mechanism used by bacteria (30). Our system can be used to

gain more insight into this phenomenon, which would also be
relevant in artificial swimmers (7, 8). The model studied here
can stabilize inphase motion with slight variations (21) and we
expect this to be relevant in determining the conditions necessary
to obtain inphase synchronization. In Clamydomonas, for exam-
ple, both “breast-stroke” and inphase wave-like motion are
observed. In previous theoretical work (21) we showed that
extended linear chains of geometrical-switch active oscillators
can sustain propagating waves.

A general question that this system can help answer is whether
the source of synchronization observed in cilia and flagella is
actually of hydrodynamic origin. At the moment this is a specula-
tion consistent with a number of experimental observations (9, 11,
15, 21). The characteristic delay time we have found should not
be generally present in stochastic synchronizing systems where
the coupling does not induce the same correlation properties
in the noise (31). Thus, with further investigation, it might be
shown to be a useful “fingerprint” of the hydrodynamic origin
of flagellar synchronization.
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